๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
์—๋Ÿฌ ๋ฐ ์ด์Šˆ

์œˆ๋„์šฐ11 ์•„๋‚˜์ฝ˜๋‹ค ํ…์„œํ”Œ๋กœ GPU ์…‹ํŒ… ์ €์žฅ์šฉ

by kaizen_bh 2025. 7. 1.

 

 

 

  • Window 11 64-bit 
  • NVIDIA GeForce GTX 1660
  • ์•„๋‚˜์ฝ˜๋‹ค ๊ฐ€์ƒํ™˜๊ฒฝ

 

 

์ฝ˜๋‹ค์™€ ๋น„์ฃผ์–ผ ์ŠคํŠœ๋””์˜ค๋Š” ๊ธฐ์กด์— ๊น”๋ ค์žˆ๊ณ  ์ฝ˜๋‹ค ๊ฐ€์ƒํ™˜๊ฒฝ์—์„œ ํ…์„œํ”Œ๋กœ๋ฅผ ์„ค์น˜ํ•ด์„œ GPU๋ฅผ ์žก์•„์ฃผ๋ คํ•œ๋‹ค

 

์•„๋ž˜์˜ ๊ธ€ ๋ฉ”์ธ์œผ๋กœ ์ฐธ๊ณ 

https://limitsinx.tistory.com/317

 

[24๋…„ ์ˆ˜์ •] Anaconda TensorflowGPU ์—ฐ๊ฒฐํ•˜๊ธฐ

๋ณธ ํฌ์ŠคํŒ…์€ ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ํ™œ์šฉํ•˜๊ณ ์ž ํ• ๋•Œ ์™ธ์žฅ ๊ทธ๋ž˜ํ”ฝ ์นด๋“œ(GPU)์™€ ์—ฐ๋™ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜ํ”ฝ์นด๋“œ, NVidia Cuda, CudNN, Python/Tensorflow ๋ฒ„์ „๋งž์ถ”๊ธฐ, ๋ณ€์ˆ˜ ๊ฒฝ๋กœ์„ค์ •... GPU๋ฅผ ๊ตฌํ–ˆ๋‹ค

limitsinx.tistory.com

 

 

์ด์ „์— Nvidia Driver ๋‹ค์šด๋กœ๋“œ ์™„๋ฃŒ

# nvidia-smi
Tue Jul  1 14:38:50 2025       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.94                 Driver Version: 560.94         CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce GTX 1660 ...  WDDM  |   00000000:01:00.0  On |                  N/A |
| 26%   39C    P8             22W /  125W |    2306MiB /   6144MiB |     21%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

 

CUDA, cuDNN ๋จผ์ € ์„ค์น˜ ํ›„ ํ…์„œํ”Œ๋กœ GPU ์žก์•„์ฃผ๋ฉด ์…‹ํŒ… ์™„๋ฃŒ

 

 

 

 

 

 

 

CUDA, cuDNN ์„ค์น˜

 

 

์ฃผ์˜. ํ…์„œํ”Œ๋กœ ์œˆ๋„์šฐ GPU ์ง€์›์€ ๋ฒ„์ ผ ์ œํ•œ ์žˆ์Œ

 

https://www.tensorflow.org/install/source_windows?hl=ko#gpu

 

Windows์˜ ์†Œ์Šค์—์„œ ๋นŒ๋“œ,Windows์˜ ์†Œ์Šค์—์„œ ๋นŒ๋“œ  |  TensorFlow

์ด ํŽ˜์ด์ง€๋Š” Cloud Translation API๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. Windows์˜ ์†Œ์Šค์—์„œ ๋นŒ๋“œ,Windows์˜ ์†Œ์Šค์—์„œ ๋นŒ๋“œ ์ปฌ๋ ‰์…˜์„ ์‚ฌ์šฉํ•ด ์ •๋ฆฌํ•˜๊ธฐ ๋‚ด ํ™˜๊ฒฝ์„ค์ •์„ ๊ธฐ์ค€์œผ๋กœ ์ฝ˜ํ…์ธ ๋ฅผ ์ €์žฅํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•˜์„ธ์š”. ์†Œ์Šค์—

www.tensorflow.org

 

 

  • ์œˆ๋„์šฐ์—์„œ ์…‹ํŒ…ํ•˜๋ ค๋ฉด ๋ฒ„์ ผ์ด ์ œํ•œ๋˜์–ด ์žˆ์Œ. ์ฐธ๊ณ ํ•ด์„œ ์„ค์น˜
  • ๋” ์ƒ์œ„ ๋ฒ„์ ผ์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด WSL2๋ฅผ ํ†ตํ•œ ๋ฆฌ๋ˆ…์Šค ํ™˜๊ฒฝ์„ ์…‹ํŒ…ํ•ด์•ผํ•จ
  • tensorflow_gpu-2.10.0 ์„ ํƒ
    • python : 3.7
    • CUDA : 11.2
    • cuDNN : 8.1 

 

 

 

 

CUDA 11.2, cuDNN 8.1 ์„ค์น˜

 

https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10

 

CUDA Toolkit 11.2 Downloads

Get CUDA Toolkit 11.2 for Linux and Windows.

developer.nvidia.com

  • ์„ค์น˜๋Š” local or network
  • local ์„ค์น˜ ํŒŒ์ผ์€ ์šฉ๋Ÿ‰์ด 2GB ์ •๋„
  • ๋‹ค์šด๋ฐ›๋Š”๋ฐ ์˜ค๋ž˜ ๊ฑธ๋ ค์„œ network๋กœ ๋ฐ›์•„์„œ ์ง„ํ–‰ํ•จ
  • ์ด ๋•Œ Nvidia Driver๋ฅผ ์ด์ „์— ์„ค์น˜ํ–ˆ๋‹ค๋ฉด SDK ์„ค์น˜ ์ด์Šˆ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜๋„ ์žˆ๋‹ค
  • ์„ค์น˜ ํ™”๋ฉด์—์„œ ํ˜ธํ™˜์„ฑ ๊ฒ€์‚ฌ ์ค‘ ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฌธ๊ตฌ๊ฐ€ ๋œจ๋ฉด์„œ ์„ค์น˜๊ฐ€ ์•ˆ๋œ๋‹ค
You already have a newer version of the nvidia frameview sdk installed

 

๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ์•„๋ž˜ ๊ธ€ ์ฐธ๊ณ ํ•˜์—ฌ NVIDIA FrameView SDK ์‚ญ์ œํ•˜๋ฉด CUDA ์„ค์น˜ ์™„๋ฃŒ

 

https://angelplayer.tistory.com/363

 

[Cuda ์—๋Ÿฌ ํ•ด๊ฒฐ] You already have a newer version of the nvidia frameview sdk installed

์—๋Ÿฌ Cuda ๋“œ๋ผ์ด๋ฒ„(cuda_1x.x.x_xxx.xx_winxx) ์„ค์น˜ ์‹œ, [You already have a newer version of the nvidia frameview sdk installed] ๋ฐœ์ƒ ์›์ธ ๊ธฐ์กด์— ๊ทธ๋ž˜ํ”ฝ ๋“œ๋ผ์ด๋ฒ„ ๋“ฑ์„ ์„ค์น˜ ์‹œ, Cuda ์„ค์น˜ ํŒŒ์ผ๊ณผ ์ค‘๋ณต์œผ๋กœ ์„ค์น˜๋˜๋Š” ํ”„๋กœ

angelplayer.tistory.com

 

 

 

 

https://developer.nvidia.com/rdp/cudnn-archive

 

cuDNN Archive

Download releases from the GPU-accelerated primitive library for deep neural networks.

developer.nvidia.com

 

  • cuDNN์€ ์••์ถ• ํ•ด์ œ ํ›„ ํŒŒ์ผ๋“ค ์˜ฎ๊ธฐ๊ณ  ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์ถ”๊ฐ€, ๊ฐ€์ƒ ํ™˜๊ฒฝ ๋งŒ๋“œ๋Š” ๋ถ€๋ถ„๊นŒ์ง€ ์œ„์˜ ๊ธ€ ์ฐธ๊ณ 
  • ๋น„์ฃผ์–ผ ์ŠคํŠœ๋””์˜ค์—์„œ ์ฝ˜๋‹ค ๊ฐ€์ƒ ํ™˜๊ฒฝ ๋งŒ๋“ค๊ณ  ์—ฐ๊ฒฐํ•  ๋•Œ ipykernel ์„ค์น˜ํ•˜๋Š”๋ฐ ๊ฝค ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋Š”๋ฐ ๊ทธ๋Ÿด๋• ์ง์ ‘ ๋งŒ๋“  ๊ฐ€์ƒ ํ™˜๊ฒฝ์— ๋“ค์–ด๊ฐ€์„œ ์ปค๋„ ์„ค์น˜ํ•ด์ฃผ๊ณ  ์—ฐ๊ฒฐํ•˜๋ฉด ํ›จ์”ฌ ๋” ๋น ๋ฅด๊ฒŒ ๋˜๊ธฐ๋„ ํ•œ๋‹ค
pip install ipykernel

 

 

 

Tensorflow ์„ค์น˜ ๋ฐ GPU ํ™•์ธ

 

๋ฒ„์ ผ ์ฒดํฌ

import tensorflow as tf
tf.__version__

=> '2.10.0'

 

 

 

GPU ์„ค์ • ํ™•์ธ

import tensorflow as tf 
from tensorflow.python.client import device_lib

print(device_lib.list_local_devices() )


[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 3753910309520622275
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 4162846720
locality {
  bus_id: 1
  links {
  }
}
incarnation: 17348995261561012313
physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1660 SUPER, pci bus id: 0000:01:00.0, compute capability: 7.5"
xla_global_id: 416903419
]

 

 

import tensorflow as tf

print("TF version:", tf.__version__)
print("Available GPUs:", tf.config.list_physical_devices('GPU'))

TF version: 2.10.0
Available GPUs: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

 

GPU ์ •์ƒ์ ์œผ๋กœ ์žกํžˆ๊ณ  ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ ํ•™์Šต ๋Œ๋ ค๋ณด๋ฉด ์‚ฌ์šฉ๋Ÿ‰ 8~90% ๋˜๋ฉด์„œ ์ •์ƒ ์ž‘๋™ ํ™•์ธ ์™„๋ฃŒ